One-tail z-test (upper tail)

Test whether the population mean has increased (H₁: μ > μ₀), using a one-tail test with positive critical value.

12 questions · Moderate -0.1

Sort by: Default | Easiest first | Hardest first
CAIE S2 2022 June Q2
5 marks Moderate -0.3
2 In the past, the mean height of plants of a particular species has been 2.3 m . A random sample of 60 plants of this species was treated with fertiliser and the mean height of these 60 plants was found to be 2.4 m . Assume that the standard deviation of the heights of plants treated with fertiliser is 0.4 m . Carry out a test at the \(2.5 \%\) significance level of whether the mean height of plants treated with fertiliser is greater than 2.3 m .
CAIE S2 2023 June Q3
6 marks Standard +0.3
3 In the past, the annual amount of wheat produced per farm by a large number of similar sized farms in a certain region had mean 24.0 tonnes and standard deviation 5.2 tonnes. Last summer a new fertiliser was used by all the farms, and it was expected that the mean amount of wheat produced per farm would be greater than 24.0 tonnes. In order to test whether this was true, a scientist recorded the amounts of wheat produced by a random sample of 50 farms last summer. He found that the value of the sample mean was 25.8 tonnes. Stating a necessary assumption, carry out the test at the \(1 \%\) significance level.
CAIE S2 2021 March Q3
4 marks Moderate -0.8
3 An architect wishes to investigate whether the buildings in a certain city are higher, on average, than buildings in other cities. He takes a large random sample of buildings from the city and finds the mean height of the buildings in the sample. He calculates the value of the test statistic, \(z\), and finds that \(z = 2.41\).
  1. Explain briefly whether he should use a one-tail test or a two-tail test.
  2. Carry out the test at the \(1 \%\) significance level.
CAIE S2 2017 June Q3
8 marks Standard +0.3
3 Household incomes, in thousands of dollars, in a certain country are represented by the random variable \(X\) with mean \(\mu\) and standard deviation \(\sigma\). The incomes of a random sample of 400 households are found and the results are summarised below. $$n = 400 \quad \Sigma x = 923 \quad \Sigma x ^ { 2 } = 3170$$
  1. Calculate unbiased estimates of \(\mu\) and \(\sigma ^ { 2 }\).
  2. A random sample of 50 households in one particular region of the country is taken and the sample mean income, in thousands of dollars, is found to be 2.6 . Using your values from part (i), test at the \(5 \%\) significance level whether household incomes in this region are greater, on average, than in the country as a whole.
CAIE S2 2011 June Q3
6 marks Standard +0.3
3 Past experience has shown that the heights of a certain variety of rose bush have been normally distributed with mean 85.0 cm . A new fertiliser is used and it is hoped that this will increase the heights. In order to test whether this is the case, a botanist records the heights, \(x \mathrm {~cm}\), of a large random sample of \(n\) rose bushes and calculates that \(\bar { x } = 85.7\) and \(s = 4.8\), where \(\bar { x }\) is the sample mean and \(s ^ { 2 }\) is an unbiased estimate of the population variance. The botanist then carries out an appropriate hypothesis test.
  1. The test statistic, \(z\), has a value of 1.786 correct to 3 decimal places. Calculate the value of \(n\).
  2. Using this value of the test statistic, carry out the test at the \(5 \%\) significance level.
CAIE S2 2014 June Q3
5 marks Moderate -0.8
3 The lengths, in centimetres, of rods produced in a factory have mean \(\mu\) and standard deviation 0.2. The value of \(\mu\) is supposed to be 250 , but a manager claims that one machine is producing rods that are too long on average. A random sample of 40 rods from this machine is taken and the sample mean length is found to be 250.06 cm . Test at the \(5 \%\) significance level whether the manager's claim is justified.
CAIE S2 2016 June Q2
5 marks Moderate -0.3
2 In the past, the mean annual crop yield from a particular field has been 8.2 tonnes. During the last 16 years, a new fertiliser has been used on the field. The mean yield for these 16 years is 8.7 tonnes. Assume that yields are normally distributed with standard deviation 1.2 tonnes. Carry out a test at the \(5 \%\) significance level of whether the mean yield has increased. \(31 \%\) of adults in a certain country own a yellow car.
  1. Use a suitable approximating distribution to find the probability that a random sample of 240 adults includes more than 2 who own a yellow car.
  2. Justify your approximation.
CAIE S2 2019 June Q2
7 marks Moderate -0.3
2 The time, in minutes, that John takes to travel to work has a normal distribution. Last year the mean and standard deviation were 26.5 and 4.8 respectively. This year John uses a different route and he finds that the mean time for his first 150 journeys is 27.5 minutes.
  1. Stating a necessary assumption, test at the \(1 \%\) significance level whether the mean time for his journey to work has increased.
  2. State, with a reason, whether it was necessary to use the Central Limit theorem in your answer to part (i).
CAIE S2 2012 November Q2
5 marks Moderate -0.3
2 The heights of a certain type of plant have a normal distribution. When the plants are grown without fertilizer, the population mean and standard deviation are 24.0 cm and 4.8 cm respectively. A gardener wishes to test, at the \(2 \%\) significance level, whether Hiergro fertilizer will increase the mean height. He treats 150 randomly chosen plants with Hiergro and finds that their mean height is 25.0 cm . Assuming that the standard deviation of the heights of plants treated with Hiergro is still 4.8 cm , carry out the test.
CAIE S2 2012 November Q5
8 marks Standard +0.3
5 It is claimed that, on average, people following the Losefast diet will lose more than 2 kg per month. The weight losses, \(x\) kilograms per month, of a random sample of 200 people following the Losefast diet were recorded and summarised as follows. $$n = 200 \quad \Sigma x = 460 \quad \Sigma x ^ { 2 } = 1636$$
  1. Calculate unbiased estimates of the population mean and variance.
  2. Test the claim at the \(1 \%\) significance level.
OCR S2 2008 January Q5
9 marks Standard +0.3
5 Over a long period the number of visitors per week to a stately home was known to have the distribution \(\mathrm { N } \left( 500,100 ^ { 2 } \right)\). After higher car parking charges were introduced, a sample of four randomly chosen weeks gave a mean number of visitors per week of 435 . You should assume that the number of visitors per week is still normally distributed with variance \(100 ^ { 2 }\).
  1. Test, at the \(10 \%\) significance level, whether there is evidence that the mean number of visitors per week has fallen.
  2. Explain why it is necessary to assume that the distribution of the number of visitors per week (after the introduction of higher charges) is normal in order to carry out the test.
OCR MEI S2 2007 June Q1
19 marks Standard +0.3
1 The random variable \(X\) represents the time taken in minutes for a haircut at a barber's shop. \(X\) is Normally distributed with mean 11 and standard deviation 3 .
  1. Find \(\mathrm { P } ( X < 10 )\).
  2. Find the probability that exactly 3 out of 8 randomly selected haircuts take less than 10 minutes.
  3. Use a suitable approximating distribution to find the probability that at least 50 out of 100 randomly selected haircuts take less than 10 minutes. A new hairdresser joins the shop. The shop manager suspects that she takes longer on average than the other staff to do a haircut. In order to test this, the manager records the time taken for 25 randomly selected cuts by the new hairdresser. The mean time for these cuts is 12.34 minutes. You should assume that the time taken by the new hairdresser is Normally distributed with standard deviation 3 minutes.
  4. Write down suitable null and alternative hypotheses for the test.
  5. Carry out the test at the \(5 \%\) level.