Single transformation between given equations

Questions that provide two explicit curve equations and ask to describe the single transformation mapping one to the other, where both equations are fully given.

6 questions

OCR MEI C1 Q7
7
  1. Describe fully the transformation which maps the curve \(y = x ^ { 2 }\) onto the curve \(y = ( x + 4 ) ^ { 2 }\).
  2. Sketch the graph of \(y = x ^ { 2 } - 4\).
OCR MEI C1 Q6
6
  1. Describe fully the transformation which maps the curve \(y = x ^ { 2 }\) onto the curve \(y = ( x + 4 ) ^ { 2 }\).
  2. Sketch the graph of \(y = x ^ { 2 } - 4\).
OCR MEI C2 Q5
5 State the transformation which maps the graph of \(y = x ^ { 2 } + 5\) onto the graph of \(y = 3 x ^ { 2 } + 15\).
OCR MEI C1 2010 January Q4
4
  1. Describe fully the transformation which maps the curve \(y = x ^ { 2 }\) onto the curve \(y = ( x + 4 ) ^ { 2 }\).
  2. Sketch the graph of \(y = x ^ { 2 } - 4\).
AQA C2 2012 June Q9
9 The diagram shows part of a curve whose equation is \(y = \log _ { 10 } \left( x ^ { 2 } + 1 \right)\).
\includegraphics[max width=\textwidth, alt={}, center]{a5fa3066-e330-46d0-98e3-92d438ed6f61-5_355_451_367_799}
  1. Use the trapezium rule with five ordinates (four strips) to find an approximate value for $$\int _ { 0 } ^ { 1 } \log _ { 10 } \left( x ^ { 2 } + 1 \right) d x$$ giving your answer to three significant figures.
  2. The graph of \(y = 2 \log _ { 10 } x\) can be transformed into the graph of \(y = 1 + 2 \log _ { 10 } x\) by means of a translation. Write down the vector of the translation.
    1. Show that \(\log _ { 10 } \left( 10 x ^ { 2 } \right) = 1 + 2 \log _ { 10 } x\).
    2. Show that the graph of \(y = 2 \log _ { 10 } x\) can also be transformed into the graph of \(y = 1 + 2 \log _ { 10 } x\) by means of a stretch, and describe the stretch.
    3. The curve with equation \(y = 1 + 2 \log _ { 10 } x\) intersects the curve \(y = \log _ { 10 } \left( x ^ { 2 } + 1 \right)\) at the point \(P\). Given that the \(x\)-coordinate of \(P\) is positive, find the gradient of the line \(O P\), where \(O\) is the origin. Give your answer in the form \(\log _ { 10 } \left( \frac { a } { b } \right)\), where \(a\) and \(b\) are integers.
AQA C2 2013 June Q5
5
  1. Use the trapezium rule with five ordinates (four strips) to find an approximate value for \(\int _ { 0 } ^ { 2 } \sqrt { 8 x ^ { 3 } + 1 } \mathrm {~d} x\), giving your answer to three significant figures.
  2. Describe the single transformation that maps the graph of \(y = \sqrt { 8 x ^ { 3 } + 1 }\) onto the graph of \(y = \sqrt { x ^ { 3 } + 1 }\).
  3. The curve with equation \(y = \sqrt { x ^ { 3 } + 1 }\) is translated by \(\left[ \begin{array} { c } 2
    - 0.7 \end{array} \right]\) to give the curve with equation \(y = \mathrm { g } ( x )\). Find the value of \(\mathrm { g } ( 4 )\).
    (3 marks)