Edexcel P4 2022 January — Question 3

Exam BoardEdexcel
ModuleP4 (Pure Mathematics 4)
Year2022
SessionJanuary
TopicParametric equations

3. The curve \(C\) has parametric equations $$x = 3 + 2 \sin t \quad y = \frac { 6 } { 7 + \cos 2 t } \quad - \frac { \pi } { 2 } \leqslant t \leqslant \frac { \pi } { 2 }$$
  1. Show that \(C\) has Cartesian equation $$y = \frac { 12 } { ( 7 - x ) ( 1 + x ) } \quad p \leqslant x \leqslant q$$ where \(p\) and \(q\) are constants to be found.
  2. Hence, find a Cartesian equation for \(C\) in the form $$y = \frac { a } { x + b } + \frac { c } { x + d } \quad p \leqslant x \leqslant q$$ where \(a , b , c\) and \(d\) are constants.