| Exam Board | Edexcel |
| Module | P4 (Pure Mathematics 4) |
| Year | 2021 |
| Session | January |
| Topic | Vectors: Lines & Planes |
8. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations
$$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r }
- 1
5
4
\end{array} \right) + \lambda \left( \begin{array} { r }
2
- 1
5
\end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r }
2
- 2
- 5
\end{array} \right) + \mu \left( \begin{array} { r }
4
- 3
b
\end{array} \right)$$
where \(\lambda\) and \(\mu\) are scalar parameters and \(b\) is a constant.
Prove that for all values of \(b \neq 7\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are skew.