Edexcel C3 Specimen — Question 2

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
SessionSpecimen
TopicFixed Point Iteration

2. \(\quad \mathrm { f } ( x ) = x ^ { 3 } - 2 x - 5\).
  1. Show that there is a root \(\alpha\) of \(\mathrm { f } ( x ) = 0\) for \(x\) in the interval \([ 2,3 ]\). The root \(\alpha\) is to be estimated using the iterative formula $$x _ { n + 1 } = \sqrt { \left( 2 + \frac { 5 } { x _ { n } } \right) } , \quad x _ { 0 } = 2$$
  2. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 significant figures.
  3. Prove that, to 5 significant figures, \(\alpha\) is 2.0946.