Edexcel C3 (Core Mathematics 3) Specimen

Question 1
View details
  1. The function f is defined by
$$\mathrm { f } : x \mapsto | x - 2 | - 3 , x \in \mathbb { R }$$
  1. Solve the equation \(\mathrm { f } ( x ) = 1\). The function g is defined by $$\mathrm { g } : x \mapsto x ^ { 2 } - 4 x + 11 , x \geq 0$$
  2. Find the range of g .
  3. Find \(g f ( - 1 )\).
Question 2
View details
2. \(\quad \mathrm { f } ( x ) = x ^ { 3 } - 2 x - 5\).
  1. Show that there is a root \(\alpha\) of \(\mathrm { f } ( x ) = 0\) for \(x\) in the interval \([ 2,3 ]\). The root \(\alpha\) is to be estimated using the iterative formula $$x _ { n + 1 } = \sqrt { \left( 2 + \frac { 5 } { x _ { n } } \right) } , \quad x _ { 0 } = 2$$
  2. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 significant figures.
  3. Prove that, to 5 significant figures, \(\alpha\) is 2.0946.
Question 3
View details
3. (a) Using the identity for \(\cos ( A + B )\), prove that \(\cos \theta \equiv 1 - 2 \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)\).
(b) Prove that \(1 + \sin \theta - \cos \theta \equiv 2 \sin \left( \frac { 1 } { 2 } \theta \right) \left[ \cos \left( \frac { 1 } { 2 } \theta \right) + \sin \left( \frac { 1 } { 2 } \theta \right) \right]\).
(c) Hence, or otherwise, solve the equation $$1 + \sin \theta - \cos \theta = 0 , \quad 0 \leq \theta < 2 \pi$$
Question 4
View details
4. $$\mathrm { f } ( x ) = x + \frac { 3 } { x - 1 } - \frac { 12 } { x ^ { 2 } + 2 x - 3 } , x \in \mathbb { R } , x > 1$$
  1. Show that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 x + 3 } { x + 3 }\).
  2. Solve the equation \(\mathrm { f } ^ { \prime } ( x ) = \frac { 22 } { 25 }\).
Question 5
View details
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{937edb48-ef4c-4974-a571-60b0fded841b-3_394_680_982_680}
\end{figure} Figure 1 shows part of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The curve meets the \(x\)-axis at \(P ( p , 0 )\) and meets the \(y\)-axis at \(Q ( 0 , q )\).
  1. On separate diagrams, sketch the curve with equation
    1. \(y = | \mathrm { f } ( x ) |\),
    2. \(y = 3 \mathrm { f } \left( \frac { 1 } { 2 } x \right)\). In each case show, in terms of \(p\) or \(q\), the coordinates of points at which the curve meets the axes. Given that \(\mathrm { f } ( x ) = 3 \ln ( 2 x + 3 )\),
  2. state the exact value of \(q\),
  3. find the value of \(p\),
  4. find an equation for the tangent to the curve at \(P\).
Question 6
View details
6. As a substance cools its temperature, \(T ^ { \circ } \mathrm { C }\), is related to the time ( \(t\) minutes) for which it has been cooling. The relationship is given by the equation $$T = 20 + 60 \mathrm { e } ^ { - 0.1 t } , t \geq 0$$
  1. Find the value of \(T\) when the substance started to cool.
  2. Explain why the temperature of the substance is always above \(20 ^ { \circ } \mathrm { C }\).
  3. Sketch the graph of \(T\) against \(t\).
  4. Find the value, to 2 significant figures, of \(t\) at the instant \(T = 60\).
  5. Find \(\frac { \mathrm { d } T } { \mathrm {~d} t }\).
  6. Hence find the value of \(T\) at which the temperature is decreasing at a rate of \(1.8 ^ { \circ } \mathrm { C }\) per minute.
Question 7
View details
7. (i) Given that \(y = \tan x + 2 \cos x\), find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(x = \frac { \pi } { 4 }\).
(ii) Given that \(x = \tan \frac { 1 } { 2 } y\), prove that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { 1 + x ^ { 2 } }\).
(iii) Given that \(y = \mathrm { e } ^ { - x } \sin 2 x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) can be expressed in the form \(R \mathrm { e } ^ { - x } \cos ( 2 x + \alpha )\). Find, to 3 significant figures, the values of \(R\) and \(\alpha\), where \(0 < \alpha < \frac { \pi } { 2 }\).