2
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5f66324-e1fc-40e1-98e7-625187e24d3d-2_579_556_600_301}
\captionsetup{labelformat=empty}
\caption{Fig. 1}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5f66324-e1fc-40e1-98e7-625187e24d3d-2_579_876_605_973}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
Fig. 1 shows a hollow cone with no base, made of paper. The radius of the cone is 6 cm and the height is 8 cm . The paper is cut from \(A\) to \(O\) and opened out to form the sector shown in Fig. 2. The circular bottom edge of the cone in Fig. 1 becomes the arc of the sector in Fig. 2. The angle of the sector is \(\theta\) radians. Calculate
- the value of \(\theta\),
- the area of paper needed to make the cone.