Edexcel C3 (Core Mathematics 3) 2015 June

Question 1
View details
  1. Given that
$$\tan \theta ^ { \circ } = p , \text { where } p \text { is a constant, } p \neq \pm 1$$ use standard trigonometric identities, to find in terms of \(p\),
  1. \(\tan 2 \theta ^ { \circ }\)
  2. \(\cos \theta ^ { \circ }\)
  3. \(\cot ( \theta - 45 ) ^ { \circ }\) Write each answer in its simplest form.
Question 2
View details
2. Given that $$\mathrm { f } ( x ) = 2 \mathrm { e } ^ { x } - 5 , \quad x \in \mathbb { R }$$
  1. sketch, on separate diagrams, the curve with equation
    1. \(y = \mathrm { f } ( x )\)
    2. \(y = | \mathrm { f } ( x ) |\) On each diagram, show the coordinates of each point at which the curve meets or cuts the axes. On each diagram state the equation of the asymptote.
  2. Deduce the set of values of \(x\) for which \(\mathrm { f } ( x ) = | \mathrm { f } ( x ) |\)
  3. Find the exact solutions of the equation \(| \mathrm { f } ( x ) | = 2\)
Question 3
View details
3. $$g ( \theta ) = 4 \cos 2 \theta + 2 \sin 2 \theta$$ Given that \(\mathrm { g } ( \theta ) = R \cos ( 2 \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the exact value of \(R\) and the value of \(\alpha\) to 2 decimal places.
  2. Hence solve, for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\), $$4 \cos 2 \theta + 2 \sin 2 \theta = 1$$ giving your answers to one decimal place. Given that \(k\) is a constant and the equation \(\mathrm { g } ( \theta ) = k\) has no solutions,
  3. state the range of possible values of \(k\).
Question 4
View details
  1. Water is being heated in an electric kettle. The temperature, \(\theta ^ { \circ } \mathrm { C }\), of the water \(t\) seconds after the kettle is switched on, is modelled by the equation
$$\theta = 120 - 100 \mathrm { e } ^ { - \lambda t } , \quad 0 \leqslant t \leqslant T$$
  1. State the value of \(\theta\) when \(t = 0\) Given that the temperature of the water in the kettle is \(70 ^ { \circ } \mathrm { C }\) when \(t = 40\),
  2. find the exact value of \(\lambda\), giving your answer in the form \(\frac { \ln a } { b }\), where \(a\) and \(b\) are integers. When \(t = T\), the temperature of the water reaches \(100 ^ { \circ } \mathrm { C }\) and the kettle switches off.
  3. Calculate the value of \(T\) to the nearest whole number.
Question 5
View details
5. The point \(P\) lies on the curve with equation $$x = ( 4 y - \sin 2 y ) ^ { 2 }$$ Given that \(P\) has \(( x , y )\) coordinates \(\left( p , \frac { \pi } { 2 } \right)\), where \(p\) is a constant,
  1. find the exact value of \(p\). The tangent to the curve at \(P\) cuts the \(y\)-axis at the point \(A\).
  2. Use calculus to find the coordinates of \(A\).
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57ea7a94-6939-4c12-a6fd-01cd6af73310-10_1004_1120_260_420} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 is a sketch showing part of the curve with equation \(y = 2 ^ { x + 1 } - 3\) and part of the line with equation \(y = 17 - x\). The curve and the line intersect at the point \(A\).
  1. Show that the \(x\) coordinate of \(A\) satisfies the equation $$x = \frac { \ln ( 20 - x ) } { \ln 2 } - 1$$
  2. Use the iterative formula $$x _ { n + 1 } = \frac { \ln \left( 20 - x _ { n } \right) } { \ln 2 } - 1 , \quad x _ { 0 } = 3$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
  3. Use your answer to part (b) to deduce the coordinates of the point \(A\), giving your answers to one decimal place.
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57ea7a94-6939-4c12-a6fd-01cd6af73310-12_632_873_294_532} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation $$\mathrm { g } ( x ) = x ^ { 2 } ( 1 - x ) \mathrm { e } ^ { - 2 x } , \quad x \geqslant 0$$
  1. Show that \(\mathrm { g } ^ { \prime } ( x ) = \mathrm { f } ( x ) \mathrm { e } ^ { - 2 x }\), where \(\mathrm { f } ( x )\) is a cubic function to be found.
  2. Hence find the range of g .
  3. State a reason why the function \(\mathrm { g } ^ { - 1 } ( x )\) does not exist.
Question 8
View details
  1. (a) Prove that
$$\sec 2 A + \tan 2 A \equiv \frac { \cos A + \sin A } { \cos A - \sin A } , \quad A \neq \frac { ( 2 n + 1 ) \pi } { 4 } , n \in \mathbb { Z }$$ (b) Hence solve, for \(0 \leqslant \theta < 2 \pi\), $$\sec 2 \theta + \tan 2 \theta = \frac { 1 } { 2 }$$ Give your answers to 3 decimal places.
Question 9
View details
9. Given that \(k\) is a negative constant and that the function \(\mathrm { f } ( x )\) is defined by $$f ( x ) = 2 - \frac { ( x - 5 k ) ( x - k ) } { x ^ { 2 } - 3 k x + 2 k ^ { 2 } } , \quad x \geqslant 0$$
  1. show that \(\mathrm { f } ( x ) = \frac { x + k } { x - 2 k }\)
  2. Hence find \(\mathrm { f } ^ { \prime } ( x )\), giving your answer in its simplest form.
  3. State, with a reason, whether \(\mathrm { f } ( x )\) is an increasing or a decreasing function. Justify your answer.