Edexcel C3 2014 June — Question 4

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2014
SessionJune
TopicProduct & Quotient Rules

  1. (i) Given that
$$x = \sec ^ { 2 } 2 y , \quad 0 < y < \frac { \pi } { 4 }$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 4 x \sqrt { ( x - 1 ) } }$$ (ii) Given that $$y = \left( x ^ { 2 } + x ^ { 3 } \right) \ln 2 x$$ find the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(x = \frac { \mathrm { e } } { 2 }\), giving your answer in its simplest form.
(iii) Given that $$f ( x ) = \frac { 3 \cos x } { ( x + 1 ) ^ { \frac { 1 } { 3 } } } , \quad x \neq - 1$$ show that $$\mathrm { f } ^ { \prime } ( x ) = \frac { \mathrm { g } ( x ) } { ( x + 1 ) ^ { \frac { 4 } { 3 } } } , \quad x \neq - 1$$ where \(\mathrm { g } ( x )\) is an expression to be found.