| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2014 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
3. (i) (a) Show that \(2 \tan x - \cot x = 5 \operatorname { cosec } x\) may be written in the form
$$a \cos ^ { 2 } x + b \cos x + c = 0$$
stating the values of the constants \(a , b\) and \(c\).
(b) Hence solve, for \(0 \leqslant x < 2 \pi\), the equation
$$2 \tan x - \cot x = 5 \operatorname { cosec } x$$
giving your answers to 3 significant figures.
(ii) Show that
$$\tan \theta + \cot \theta \equiv \lambda \operatorname { cosec } 2 \theta , \quad \theta \neq \frac { n \pi } { 2 } , \quad n \in \mathbb { Z }$$
stating the value of the constant \(\lambda\).