| Exam Board | Edexcel |
| Module | C3 (Core Mathematics 3) |
| Year | 2009 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
2. (a) Use the identity \(\cos ^ { 2 } \theta + \sin ^ { 2 } \theta = 1\) to prove that \(\tan ^ { 2 } \theta = \sec ^ { 2 } \theta - 1\).
(b) Solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation
$$2 \tan ^ { 2 } \theta + 4 \sec \theta + \sec ^ { 2 } \theta = 2$$