Edexcel C3 (Core Mathematics 3) 2007 June

Question 1
View details
Find the exact solutions to the equations
  1. \(\ln x + \ln 3 = \ln 6\),
  2. \(\mathrm { e } ^ { x } + 3 \mathrm { e } ^ { - x } = 4\).
Question 2
View details
$$f ( x ) = \frac { 2 x + 3 } { x + 2 } - \frac { 9 + 2 x } { 2 x ^ { 2 } + 3 x - 2 } , \quad x > \frac { 1 } { 2 }$$
  1. Show that \(\mathrm { f } ( x ) = \frac { 4 x - 6 } { 2 x - 1 }\).
  2. Hence, or otherwise, find \(\mathrm { f } ^ { \prime } ( x )\) in its simplest form.
Question 3
View details
3. A curve \(C\) has equation $$y = x ^ { 2 } \mathrm { e } ^ { x }$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), using the product rule for differentiation.
  2. Hence find the coordinates of the turning points of \(C\).
  3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  4. Determine the nature of each turning point of the curve \(C\).
Question 4
View details
4. $$f ( x ) = - x ^ { 3 } + 3 x ^ { 2 } - 1$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be rewritten as $$x = \sqrt { } \left( \frac { 1 } { 3 - x } \right)$$
  2. Starting with \(x _ { 1 } = 0.6\), use the iteration $$\left. x _ { n + 1 } = \sqrt { ( } \frac { 1 } { 3 - x _ { n } } \right)$$ to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving all your answers to 4 decimal places.
  3. Show that \(x = 0.653\) is a root of \(\mathrm { f } ( x ) = 0\) correct to 3 decimal places.
Question 5
View details
5. The functions \(f\) and \(g\) are defined by $$\begin{array} { l l } \mathrm { f } : x \mapsto \ln ( 2 x - 1 ) , & x \in \mathbb { R } , x > \frac { 1 } { 2 }
\mathrm {~g} : x \mapsto \frac { 2 } { x - 3 } , & x \in \mathbb { R } , x \neq 3 \end{array}$$
  1. Find the exact value of fg(4).
  2. Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\), stating its domain.
  3. Sketch the graph of \(y = | \mathrm { g } ( x ) |\). Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the \(y\)-axis.
  4. Find the exact values of \(x\) for which \(\left| \frac { 2 } { x - 3 } \right| = 3\).
Question 6
View details
  1. (a) Express \(3 \sin x + 2 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
    (b) Hence find the greatest value of \(( 3 \sin x + 2 \cos x ) ^ { 4 }\).
    (c) Solve, for \(0 < x < 2 \pi\), the equation
$$3 \sin x + 2 \cos x = 1$$ giving your answers to 3 decimal places.
Question 7
View details
  1. (a) Prove that
$$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 2 \operatorname { cosec } 2 \theta , \quad \theta \neq 90 n ^ { \circ }$$ (b) On the axes on page 20, sketch the graph of \(y = 2 \operatorname { cosec } 2 \theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
(c) Solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation $$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 3 ,$$ giving your answers to 1 decimal place.
\includegraphics[max width=\textwidth, alt={}, center]{f3c3c777-7808-4d82-a1f4-2dee6674be1e-11_899_1253_315_347}
Question 8
View details
8. The amount of a certain type of drug in the bloodstream \(t\) hours after it has been taken is given by the formula $$x = D \mathrm { e } ^ { - \frac { 1 } { 8 } t } ,$$ where \(x\) is the amount of the drug in the bloodstream in milligrams and \(D\) is the dose given in milligrams. A dose of 10 mg of the drug is given.
  1. Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places. A second dose of 10 mg is given after 5 hours.
  2. Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places. No more doses of the drug are given. At time \(T\) hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg .
  3. Find the value of \(T\).