Edexcel C3 (Core Mathematics 3) 2006 June

Question 1
View details
  1. Simplify \(\frac { 3 x ^ { 2 } - x - 2 } { x ^ { 2 } - 1 }\).
  2. Hence, or otherwise, express \(\frac { 3 x ^ { 2 } - x - 2 } { x ^ { 2 } - 1 } - \frac { 1 } { x ( x + 1 ) }\) as a single fraction in its simplest form.
Question 2
View details
Differentiate, with respect to \(x\),
  1. \(\mathrm { e } ^ { 3 x } + \ln 2 x\),
  2. \(\left( 5 + x ^ { 2 } \right) ^ { \frac { 3 } { 2 } }\).
Question 3
View details
\begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{f0f328ed-3550-4b8d-8b80-016df8773b21-04_568_881_312_504}
\end{figure} Figure 1 shows part of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\), where f is an increasing function of \(x\). The curve passes through the points \(P ( 0 , - 2 )\) and \(Q ( 3,0 )\) as shown. In separate diagrams, sketch the curve with equation
  1. \(y = | f ( x ) |\),
  2. \(y = \mathrm { f } ^ { - 1 } ( x )\),
  3. \(y = \frac { 1 } { 2 } \mathrm { f } ( 3 x )\). Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
Question 4
View details
  1. A heated metal ball is dropped into a liquid. As the ball cools, its temperature, \(T ^ { \circ } \mathrm { C }\), \(t\) minutes after it enters the liquid, is given by
$$T = 400 \mathrm { e } ^ { - 0.05 t } + 25 , \quad t \geqslant 0$$
  1. Find the temperature of the ball as it enters the liquid.
  2. Find the value of \(t\) for which \(T = 300\), giving your answer to 3 significant figures.
  3. Find the rate at which the temperature of the ball is decreasing at the instant when \(t = 50\). Give your answer in \({ } ^ { \circ } \mathrm { C }\) per minute to 3 significant figures.
  4. From the equation for temperature \(T\) in terms of \(t\), given above, explain why the temperature of the ball can never fall to \(20 ^ { \circ } \mathrm { C }\).
Question 5
View details
5. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{f0f328ed-3550-4b8d-8b80-016df8773b21-07_465_565_296_701}
\end{figure} Figure 2 shows part of the curve with equation $$y = ( 2 x - 1 ) \tan 2 x , \quad 0 \leqslant x < \frac { \pi } { 4 }$$ The curve has a minimum at the point \(P\). The \(x\)-coordinate of \(P\) is \(k\).
  1. Show that \(k\) satisfies the equation $$4 k + \sin 4 k - 2 = 0$$ The iterative formula $$x _ { n + 1 } = \frac { 1 } { 4 } \left( 2 - \sin 4 x _ { n } \right) , x _ { 0 } = 0.3$$ is used to find an approximate value for \(k\).
  2. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to 4 decimal places.
  3. Show that \(k = 0.277\), correct to 3 significant figures.
Question 6
View details
  1. (a) Using \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(\operatorname { cosec } ^ { 2 } \theta - \cot ^ { 2 } \theta \equiv 1\).
    (b) Hence, or otherwise, prove that
$$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta + \cot ^ { 2 } \theta$$ (c) Solve, for \(90 ^ { \circ } < \theta < 180 ^ { \circ }\), $$\operatorname { cosec } ^ { 4 } \theta - \cot ^ { 4 } \theta = 2 - \cot \theta$$
Question 7
View details
7. For the constant \(k\), where \(k > 1\), the functions f and g are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto \ln ( x + k ) , \quad x > - k ,
& \mathrm {~g} : x \mapsto | 2 x - k | , \quad x \in \mathbb { R } . \end{aligned}$$
  1. On separate axes, sketch the graph of f and the graph of g . On each sketch state, in terms of \(k\), the coordinates of points where the graph meets the coordinate axes.
  2. Write down the range of f.
  3. Find \(\mathrm { fg } \left( \frac { k } { 4 } \right)\) in terms of \(k\), giving your answer in its simplest form. The curve \(C\) has equation \(y = \mathrm { f } ( x )\). The tangent to \(C\) at the point with \(x\)-coordinate 3 is parallel to the line with equation \(9 y = 2 x + 1\).
  4. Find the value of \(k\).
Question 8
View details
  1. (a) Given that \(\cos A = \frac { 3 } { 4 }\), where \(270 ^ { \circ } < A < 360 ^ { \circ }\), find the exact value of \(\sin 2 A\).
    (b) (i) Show that \(\cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right) \equiv \cos 2 x\).
Given that $$y = 3 \sin ^ { 2 } x + \cos \left( 2 x + \frac { \pi } { 3 } \right) + \cos \left( 2 x - \frac { \pi } { 3 } \right)$$ (ii) show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin 2 x\).