A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q7
Edexcel C3 2006 January — Question 7
Exam Board
Edexcel
Module
C3 (Core Mathematics 3)
Year
2006
Session
January
Topic
Reciprocal Trig & Identities
7. (a) Show that
\(\frac { \cos 2 x } { \cos x + \sin x } \equiv \cos x - \sin x , \quad x \neq \left( n - \frac { 1 } { 4 } \right) \pi , n \in \mathbb { Z }\),
\(\frac { 1 } { 2 } ( \cos 2 x - \sin 2 x ) \equiv \cos ^ { 2 } x - \cos x \sin x - \frac { 1 } { 2 }\).
(b) Hence, or otherwise, show that the equation $$\cos \theta \left( \frac { \cos 2 \theta } { \cos \theta + \sin \theta } \right) = \frac { 1 } { 2 }$$ can be written as $$\sin 2 \theta = \cos 2 \theta$$ (c) Solve, for \(0 \leqslant \theta < 2 \pi\), $$\sin 2 \theta = \cos 2 \theta$$ giving your answers in terms of \(\pi\).
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8