Edexcel C34 2018 January — Question 14

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2018
SessionJanuary
TopicDifferential equations

14. The volume of a spherical balloon of radius \(r \mathrm {~cm}\) is \(V \mathrm {~cm} ^ { 3 }\), where \(V = \frac { 4 } { 3 } \pi r ^ { 3 }\)
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} r }\) The volume of the balloon increases with time \(t\) seconds according to the formula $$\frac { \mathrm { d } V } { \mathrm {~d} t } = \frac { 9000 \pi } { ( t + 81 ) ^ { \frac { 5 } { 4 } } } \quad t \geqslant 0$$
  2. Using the chain rule, or otherwise, show that $$\frac { \mathrm { d } r } { \mathrm {~d} t } = \frac { k } { r ^ { n } ( t + 81 ) ^ { \frac { 5 } { 4 } } } \quad t \geqslant 0$$ where \(k\) and \(n\) are constants to be found. Initially, the radius of the balloon is 3 cm .
  3. Using the values of \(k\) and \(n\) found in part (b), solve the differential equation $$\frac { \mathrm { d } r } { \mathrm {~d} t } = \frac { k } { r ^ { n } ( t + 81 ) ^ { \frac { 5 } { 4 } } } \quad t \geqslant 0$$ to obtain a formula for \(r\) in terms of \(t\).
  4. Hence find the radius of the balloon when \(t = 175\), giving your answer to 3 significant figures.
    (1)
  5. Find the rate of increase of the radius of the balloon when \(t = 175\). Give your answer to 3 significant figures.
    END