Edexcel P3 2024 June — Question 9

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2024
SessionJune
TopicParametric equations

9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5a695b86-1660-4c06-ac96-4cdb07af9a2e-30_714_1079_251_495} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} The curve shown in Figure 5 has equation $$x = 4 \sin ^ { 2 } y - 1 \quad 0 \leqslant y \leqslant \frac { \pi } { 2 }$$ The point \(P \left( k , \frac { \pi } { 3 } \right)\) lies on the curve.
  1. Verify that \(k = 2\)
    1. Find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) in terms of \(y\)
    2. Hence show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 2 \sqrt { x + 1 } \sqrt { 3 - x } }\) The normal to the curve at \(P\) cuts the \(x\)-axis at the point \(N\).
  2. Find the exact area of triangle \(O P N\), where \(O\) is the origin. Give your answer in the form \(a \pi + b \pi ^ { 2 }\) where \(a\) and \(b\) are constants.