- In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
- Show that
$$\frac { \cos 2 x } { \sin x } + \frac { \sin 2 x } { \cos x } \equiv \operatorname { cosec } x \quad x \neq \frac { n \pi } { 2 } \quad n \in \mathbb { Z }$$
- Hence solve, for \(0 < \theta < \frac { \pi } { 2 }\)
$$\left( \frac { \cos 2 \theta } { \sin \theta } + \frac { \sin 2 \theta } { \cos \theta } \right) ^ { 2 } = 6 \cot \theta - 4$$
giving your answers to 3 significant figures as appropriate.
- Using the result from part (a), or otherwise, find the exact value of
$$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \left( \frac { \cos 2 x } { \sin x } + \frac { \sin 2 x } { \cos x } \right) \cot x d x$$