Edexcel P3 2023 June — Question 9

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2023
SessionJune
TopicReciprocal Trig & Identities

  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that $$\frac { \cos 2 x } { \sin x } + \frac { \sin 2 x } { \cos x } \equiv \operatorname { cosec } x \quad x \neq \frac { n \pi } { 2 } \quad n \in \mathbb { Z }$$
  2. Hence solve, for \(0 < \theta < \frac { \pi } { 2 }\) $$\left( \frac { \cos 2 \theta } { \sin \theta } + \frac { \sin 2 \theta } { \cos \theta } \right) ^ { 2 } = 6 \cot \theta - 4$$ giving your answers to 3 significant figures as appropriate.
  3. Using the result from part (a), or otherwise, find the exact value of $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 4 } } \left( \frac { \cos 2 x } { \sin x } + \frac { \sin 2 x } { \cos x } \right) \cot x d x$$