Edexcel P3 2023 June — Question 8

Exam BoardEdexcel
ModuleP3 (Pure Mathematics 3)
Year2023
SessionJune
TopicProduct & Quotient Rules

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bef290fb-fbac-4c9c-981e-5e323ac7182e-22_687_698_255_685} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = ( 2 x + 1 ) ^ { 3 } e ^ { - 4 x }$$
  1. Show that $$\mathrm { f } ^ { \prime } ( x ) = A ( 2 x + 1 ) ^ { 2 } ( 1 - 4 x ) \mathrm { e } ^ { - 4 x }$$ where \(A\) is a constant to be found.
  2. Hence find the exact coordinates of the two stationary points on \(C\). The function g is defined by $$g ( x ) = 8 f ( x - 2 )$$
  3. Find the coordinates of the maximum stationary point on the curve with equation \(y = g ( x )\).