Edexcel C2 Specimen — Question 9

Exam BoardEdexcel
ModuleC2 (Core Mathematics 2)
SessionSpecimen
TopicDifferentiation Applications
TypeOptimization with constraints

9. Figure 3 $$( x + 1 ) ^ { 2 }$$ Figure 3 shows a triangle \(P Q R\). The size of angle \(Q P R\) is \(30 ^ { \circ }\), the length of \(P Q\) is \(( x + 1 )\) and the length of \(P R\) is \(( 4 - x ) ^ { 2 }\), where \(X \in \Re\).
  1. Show that the area \(A\) of the triangle is given by \(A = \frac { 1 } { 4 } \left( x ^ { 3 } - 7 x ^ { 2 } + 8 x + 16 \right)\)
  2. Use calculus to prove that the area of \(\triangle P Q R\) is a maximum when \(x = \frac { 2 } { 3 }\). Explain clearly how you know that this value of \(x\) gives the maximum area.
  3. Find the maximum area of \(\triangle P Q R\).
  4. Find the length of \(Q R\) when the area of \(\triangle P Q R\) is a maximum. END