CAIE P1 2010 November — Question 11

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2010
SessionNovember
TopicAreas Between Curves

11
\includegraphics[max width=\textwidth, alt={}, center]{32a57386-2696-4fda-a3cb-ca0c5c3be432-5_710_931_255_607} The diagram shows parts of the curves \(y = 9 - x ^ { 3 }\) and \(y = \frac { 8 } { x ^ { 3 } }\) and their points of intersection \(P\) and \(Q\). The \(x\)-coordinates of \(P\) and \(Q\) are \(a\) and \(b\) respectively.
  1. Show that \(x = a\) and \(x = b\) are roots of the equation \(x ^ { 6 } - 9 x ^ { 3 } + 8 = 0\). Solve this equation and hence state the value of \(a\) and the value of \(b\).
  2. Find the area of the shaded region between the two curves.
  3. The tangents to the two curves at \(x = c\) (where \(a < c < b\) ) are parallel to each other. Find the value of \(c\).