| Exam Board | Edexcel |
| Module | P2 (Pure Mathematics 2) |
| Year | 2020 |
| Session | October |
| Topic | Reciprocal Trig & Identities |
7. (i) Show that
$$\tan \theta + \frac { 1 } { \tan \theta } \equiv \frac { 1 } { \sin \theta \cos \theta } \quad \theta \neq \frac { \mathrm { n } \pi } { 2 } \quad n \in \mathbb { Z }$$
(ii) Solve, for \(0 \leqslant x < 90 ^ { \circ }\), the equation
$$3 \cos ^ { 2 } \left( 2 x + 10 ^ { \circ } \right) = 1$$
giving your answers in degrees to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)