5. (a) Given \(0 < a < 1\), sketch the curve with equation
$$y = a ^ { x }$$
showing the coordinates of the point at which the curve crosses the \(y\)-axis.
| \(x\) | 2 | 2.5 | 3 | 3.5 | 4 |
| \(y\) | 4.25 | 6.427 | 9.125 | 12.34 | 16.06 |
The table above shows corresponding values of \(x\) and \(y\) for \(y = x ^ { 2 } + \left( \frac { 1 } { 2 } \right) ^ { x }\)
The values of \(y\) are given to 4 significant figures as appropriate.
Using the trapezium rule with all the values of \(y\) in the given table,
(b) obtain an estimate for \(\int _ { 2 } ^ { 4 } \left( x ^ { 2 } + \left( \frac { 1 } { 2 } \right) ^ { x } \right) \mathrm { d } x\)
Using your answer to part (b) and making your method clear, estimate
(c) \(\quad \int _ { 2 } ^ { 4 } \left( x ( x - 3 ) + \left( \frac { 1 } { 2 } \right) ^ { x } \right) \mathrm { d } x\)