Edexcel P2 2024 January — Question 6

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2024
SessionJanuary
TopicLaws of Logarithms

  1. (a) Given that
$$2 \log _ { 4 } ( x + 3 ) + \log _ { 4 } x = \log _ { 4 } ( 4 x + 2 ) + \frac { 1 } { 2 }$$ show that $$x ^ { 3 } + 6 x ^ { 2 } + x - 4 = 0$$ (b) Given also that - 1 is a root of the equation $$x ^ { 3 } + 6 x ^ { 2 } + x - 4 = 0$$
  1. use algebra to find the other two roots of the equation.
  2. Hence solve $$2 \log _ { 4 } ( x + 3 ) + \log _ { 4 } x = \log _ { 4 } ( 4 x + 2 ) + \frac { 1 } { 2 }$$