- (a) Sketch the curve with equation
$$y = a ^ { - x } + 4$$
where \(a\) is a constant and \(a > 1\)
On your sketch show
- the coordinates of the point of intersection of the curve with the \(y\)-axis
- the equation of the asymptote to the curve.
| \(x\) | - 4 | - 1.5 | 1 | 3.5 | 6 | 8.5 |
| \(y\) | 13 | 6.280 | 4.577 | 4.146 | 4.037 | 4.009 |
The table above shows corresponding values of \(x\) and \(y\) for \(y = 3 ^ { - \frac { 1 } { 2 } x } + 4\)
The values of \(y\) are given to four significant figures, as appropriate.
Using the trapezium rule with all the values of \(y\) in the table,
(b) find an approximate value for
$$\int _ { - 4 } ^ { 8.5 } \left( 3 ^ { - \frac { 1 } { 2 } x } + 4 \right) d x$$
giving your answer to two significant figures.
(c) Using the answer to part (b), find an approximate value for
- \(\int _ { - 4 } ^ { 8.5 } \left( 3 ^ { - \frac { 1 } { 2 } x } \right) \mathrm { d } x\)
- \(\int _ { - 4 } ^ { 8.5 } \left( 3 ^ { - \frac { 1 } { 2 } x } + 4 \right) \mathrm { d } x + \int _ { - 8.5 } ^ { 4 } \left( 3 ^ { \frac { 1 } { 2 } x } + 4 \right) \mathrm { d } x\)