Edexcel C12 2016 October — Question 12

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2016
SessionOctober
TopicCurve Sketching
TypeFind stationary points of polynomial

12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{53865e15-3838-4551-b507-fe49549b87db-32_748_883_274_477} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Diagram not drawn to scale Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = \frac { x ^ { 3 } - 9 x ^ { 2 } - 81 x } { 27 }$$ The curve crosses the \(x\)-axis at the point \(A\), the point \(B\) and the origin \(O\). The curve has a maximum turning point at \(C\) and a minimum turning point at \(D\).
  1. Use algebra to find exact values for the \(x\) coordinates of the points \(A\) and \(B\).
  2. Use calculus to find the coordinates of the points \(C\) and \(D\). The graph of \(y = \mathrm { f } ( x + a )\), where \(a\) is a constant, has its minimum turning point on the \(y\)-axis.
  3. Write down the value of \(a\).
    \includegraphics[max width=\textwidth, alt={}, center]{53865e15-3838-4551-b507-fe49549b87db-35_29_37_182_1914}