Edexcel C12 2019 January — Question 16

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2019
SessionJanuary
TopicDifferentiation Applications
TypeOptimization with constraints

16. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{75d68987-2314-4c8f-8160-24977c5c4e34-44_442_822_285_561} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows the design for a container in the shape of a hollow triangular prism. The container is open at the top, which is labelled \(A B C D\). The sides of the container, \(A B F E\) and \(D C F E\), are rectangles. The ends of the container, \(A D E\) and \(B C F\), are congruent right-angled triangles, as shown in Figure 4. The ends of the container are vertical and the edge \(E F\) is horizontal. The edges \(A E , D E\) and \(E F\) have lengths \(4 x\) metres, \(3 x\) metres and \(l\) metres respectively. Given that the container has a capacity of \(0.75 \mathrm {~m} ^ { 3 }\) and is made of material of negligible thickness,
  1. show that the internal surface area of the container, \(S \mathrm {~m} ^ { 2 }\), is given by $$S = 12 x ^ { 2 } + \frac { 7 } { 8 x }$$
  2. Use calculus to find the value of \(x\), for which \(S\) is a minimum. Give your answer to 3 significant figures.
  3. Justify that the value of \(x\) found in part (b) gives a minimum value for \(S\). Using the value of \(x\) found in part (b), find to 2 decimal places,
    1. the length of the edge \(A D\),
    2. the length of the edge \(C D\).
      END