Edexcel C12 2018 January — Question 7

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2018
SessionJanuary
TopicDifferentiation Applications
TypeOptimization with constraints

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6f9ace43-747b-419f-a9d1-d30165d77379-18_675_1408_292_358} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a rectangular sheet of metal of negligible thickness, which measures 25 cm by 15 cm . Squares of side \(x \mathrm {~cm}\) are cut from each corner of the sheet and the remainder is folded along the dotted lines to make an open cuboid box, as shown in Figure 2.
  1. Show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of the box is given by $$V = 4 x ^ { 3 } - 80 x ^ { 2 } + 375 x$$
  2. Use calculus to find the value of \(x\), to 3 significant figures, for which the volume of the box is a maximum.
  3. Justify that this value of \(x\) gives a maximum value for \(V\).
  4. Find, to 3 significant figures, the maximum volume of the box.
    \section*{8.} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6f9ace43-747b-419f-a9d1-d30165d77379-22_670_1004_292_392} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} Figure 3 shows a sketch of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The curve crosses the \(y\)-axis at the point \(( 0,5 )\) and crosses the \(x\)-axis at the point \(( 6,0 )\). The curve has a minimum point at \(( 1,3 )\) and a maximum point at \(( 4,7 )\). On separate diagrams, sketch the curve with equation