Edexcel C12 2015 January — Question 13

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2015
SessionJanuary
TopicDifferentiation Applications
TypeFind normal line equation

13. The curve \(C\) has equation $$y = 3 x ^ { 2 } - 4 x + 2$$ The line \(l _ { 1 }\) is the normal to the curve \(C\) at the point \(P ( 1,1 )\)
  1. Show that \(l _ { 1 }\) has equation $$x + 2 y - 3 = 0$$ The line \(l _ { 1 }\) meets curve \(C\) again at the point \(Q\).
  2. By solving simultaneous equations, determine the coordinates of the point \(Q\). Another line \(l _ { 2 }\) has equation \(k x + 2 y - 3 = 0\), where \(k\) is a constant.
  3. Show that the line \(l _ { 2 }\) meets the curve \(C\) once only when $$k ^ { 2 } - 16 k + 40 = 0$$
  4. Find the two exact values of \(k\) for which \(l _ { 2 }\) is a tangent to \(C\).