10.
\includegraphics[max width=\textwidth, alt={}]{2217be5e-8edd-413f-9c97-212e585ff58d-23_2255_50_315_37}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2217be5e-8edd-413f-9c97-212e585ff58d-23_411_1065_252_277}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
The triangle \(X Y Z\) in Figure 4 has \(X Y = 6 \mathrm {~cm} , Y Z = 9 \mathrm {~cm} , Z X = 4 \mathrm {~cm}\) and angle \(Z X Y = \alpha\).
The point \(W\) lies on the line \(X Y\).
The circular arc \(Z W\), in Figure 4, is a major arc of the circle with centre \(X\) and radius 4 cm .
- Show that, to 3 significant figures, \(\alpha = 2.22\) radians.
- Find the area, in \(\mathrm { cm } ^ { 2 }\), of the major sector \(X Z W X\).
The region, shown shaded in Figure 4, is to be used as a design for a logo.
\section*{Calculate}
- the area of the logo
- the perimeter of the logo.
\includegraphics[max width=\textwidth, alt={}, center]{2217be5e-8edd-413f-9c97-212e585ff58d-23_383_705_1813_182}
Cosine Rule:
$$\begin{aligned}
& \cos A = \frac { b ^ { 2 } + c ^ { 2 } - a ^ { 2 } } { 2 b c }
& \cos A = \frac { 4 ^ { 2 } + 6 ^ { 2 } - 9 ^ { 2 } } { 2 ( 4 ) ( 6 ) }
& A = 2.22 \text { radians }
\end{aligned}$$
b)
\includegraphics[max width=\textwidth, alt={}, center]{2217be5e-8edd-413f-9c97-212e585ff58d-24_323_429_302_353}
$$\begin{aligned}
\text { Area } & = 1 / 2 r ^ { 2 } \theta
& = 1 / 2 ( 4 ) ^ { 2 } ( 2 \pi - 2.22 )
& = 32.5 \mathrm {~cm} ^ { 2 }
\end{aligned}$$
c) Area (Logo) \(=\) Area ( \(\Delta\) ) + Area (Sector)
\includegraphics[max width=\textwidth, alt={}, center]{2217be5e-8edd-413f-9c97-212e585ff58d-24_193_268_840_620}
\includegraphics[max width=\textwidth, alt={}, center]{2217be5e-8edd-413f-9c97-212e585ff58d-24_186_390_934_1028}
$$\begin{aligned}
& = 1 / 2 ( 4 ) ( 6 ) \sin 2.22
\text { Area } ( \log 0 ) & = 1 / 2 ( 4 ) ( 6 ) \sin 2.22 + 1 / 2 ( 4 ) ^ { 2 } ( 2 \pi - 2.22 )
& = 42.1 \mathrm {~cm} ^ { 2 }
\end{aligned}$$
d) \(P = 9 + 2 +\) Arc length
$$\begin{aligned}
P & = 9 + 2 + 4 ( 2 \pi - 2.22 )
& = 27.3 \mathrm {~cm}
\end{aligned}$$
\section*{PMT PhysicsAndMathsTutor.com}
| VIUV SIHI NI IIIUM ION OC | VIUV SIHI NI JIIIM ION OC | V34V SIHI NI EIIYM ION OC |