Edexcel P1 2018 Specimen — Question 9

Exam BoardEdexcel
ModuleP1 (Pure Mathematics 1)
Year2018
SessionSpecimen
TopicProduct & Quotient Rules

9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2217be5e-8edd-413f-9c97-212e585ff58d-20_693_1038_267_450} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A sketch of part of the curve \(C\) with equation $$y = 20 - 4 x - \frac { 18 } { x } , \quad x > 0$$ is shown in Figure 3. Point \(A\) lies on \(C\) and has \(x\) coordinate equal to 2
  1. Show that the equation of the normal to \(C\) at \(A\) is \(y = - 2 x + 7\). The normal to \(C\) at \(A\) meets \(C\) again at the point \(B\), as shown in Figure 3 .
  2. Use algebra to find the coordinates of \(B\).
    a) \(y = 20 - 4 ( 2 ) - \frac { 18 } { 2 } \quad \therefore \quad y = 3\) $$\begin{aligned} & y = 20 - 4 x - 18 x ^ { - 1 }
    & \therefore \frac { d y } { d x } = - 4 + 18 x ^ { - 2 } \end{aligned}$$
  3. \(x = 2 \quad \frac { d y } { d x } = - 4 + \frac { 18 } { 2 ^ { 2 } } = 1 / 2\) $$m = - 2$$
    \includegraphics[max width=\textwidth, alt={}]{2217be5e-8edd-413f-9c97-212e585ff58d-20_2258_50_313_1980}
    9 continued
    \includegraphics[max width=\textwidth, alt={}, center]{2217be5e-8edd-413f-9c97-212e585ff58d-21_2253_51_315_35} $$\begin{aligned} \therefore \quad y & = - 2 x + c
    3 & = - 2 ( 2 ) + c
    c & = 7
    y & = - 2 x + 7 \end{aligned}$$ b) \(20 - 4 x - \frac { 18 } { x } = - 2 x + 7\) $$\begin{aligned} \therefore & 13 - 2 x - \frac { 18 } { x } = 0
    & 13 x - 2 x ^ { 2 } - 18 = 0
    & 0 = 2 x ^ { 2 } - 13 x + 18
    \therefore & x = \frac { - b \pm \sqrt { b ^ { 2 } - 4 a c } } { 2 a }
    & a = 2 \quad b = - 13 \quad c = 18
    & x = 2 \quad x = a / 2
    \therefore & y = 3 \quad \therefore y = - 2
    B = & ( a / 2 , - 2 ) \end{aligned}$$ "
    VIIV SIHI NI IIIIM I I N O CVI4V SIHI NI IIIHM ION OOV34V SIHI NI JIIYM ION OC