8 The equation of a curve is \(y = \frac { 6 } { 5 - 2 x }\).
- Calculate the gradient of the curve at the point where \(x = 1\).
- A point with coordinates \(( x , y )\) moves along the curve in such a way that the rate of increase of \(y\) has a constant value of 0.02 units per second. Find the rate of increase of \(x\) when \(x = 1\).
- The region between the curve, the \(x\)-axis and the lines \(x = 0\) and \(x = 1\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Show that the volume obtained is \(\frac { 12 } { 5 } \pi\).