4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f1e1d4f5-dd27-4839-a6f3-f6906666302c-08_721_855_214_550}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of the curve with equation \(y = \mathrm { f } ( x )\), where
$$f ( x ) = \cos 2 x ^ { \circ } \quad 0 \leqslant x \leqslant k$$
The point \(Q\) and the point \(R ( k , 0 )\) lie on the curve and are shown in Figure 2.
- State
- the coordinates of \(Q\),
- the value of \(k\).
- Given that there are exactly two solutions to the equation
$$\cos 2 x ^ { \circ } = p \quad \text { in the region } 0 \leqslant x \leqslant k$$
find the range of possible values for \(p\).