\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a5a5dd8b-1438-4698-929a-c5e3d5ed0694-24_536_933_255_568}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows part of the graph of the trigonometric function with equation \(y = \mathrm { f } ( x )\)
- Write down an expression for \(\mathrm { f } ( x )\)
On a separate diagram,
- sketch, for \(- 2 \pi < x < 2 \pi\), the graph of the curve with equation \(y = \mathrm { f } \left( x + \frac { \pi } { 4 } \right)\)
Show clearly the coordinates of all the points where the curve intersects the coordinate axes.
(ii)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a5a5dd8b-1438-4698-929a-c5e3d5ed0694-24_378_1251_1617_408}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
Figure 4 shows part of the graph of the trigonometric function with equation \(y = \mathrm { g } ( x )\) - Write down an expression for \(\mathrm { g } ( x )\)
On a separate diagram,
- sketch, for \(- 2 \pi < x < 2 \pi\), the graph of the curve with equation \(y = \mathrm { g } ( x ) - 2\)
Show clearly the coordinates of the \(y\) intercept.