5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c8f8d35d-c2dd-4a1f-a4bb-a4fa06413d12-10_677_1036_260_456}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a plot of part of the curve with equation \(y = \cos 2 x\) with \(x\) being measured in radians.
The point \(P\), shown on Figure 2, is a minimum point on the curve.
- State the coordinates of \(P\).
A copy of Figure 2, called Diagram 1, is shown at the top of the next page.
- Sketch, on Diagram 1, the curve with equation \(y = \sin x\)
- Hence, or otherwise, deduce the number of solutions of the equation
- \(\cos 2 x = \sin x\) that lie in the region \(0 \leqslant x \leqslant 20 \pi\)
- \(\cos 2 x = \sin x\) that lie in the region \(0 \leqslant x \leqslant 21 \pi\)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c8f8d35d-c2dd-4a1f-a4bb-a4fa06413d12-11_693_1050_301_447}
\captionsetup{labelformat=empty}
\caption{
Diagram 1}\}
\end{figure}
\textbackslash section*\{Diagram 1