CAIE Further Paper 4 2020 November — Question 5

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2020
SessionNovember
TopicProbability Generating Functions
TypeMultiple independent coins/dice

5 Keira has two unbiased coins. She tosses both coins. The number of heads obtained by Keira is denoted by \(X\).
  1. Find the probability generating function \(\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } )\) of \(X\).
    Hassan has three coins, two of which are biased so that the probability of obtaining a head when the coin is tossed is \(\frac { 1 } { 3 }\). The corresponding probability for the third coin is \(\frac { 1 } { 4 }\). The number of heads obtained by Hassan when he tosses these three coins is denoted by \(Y\).
  2. Find the probability generating function \(\mathrm { G } _ { Y } ( \mathrm { t } )\) of \(Y\).
    The random variable \(Z\) is the total number of heads obtained by Keira and Hassan.
  3. Find the probability generating function of \(Z\), expressing your answer as a polynomial.
  4. Use the probability generating function of \(Z\) to find \(\mathrm { E } ( Z )\).
  5. Use the probability generating function of \(Z\) to find the most probable value of \(Z\).