A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Trig Equations
Q2
CAIE P1 2003 November — Question 2
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2003
Session
November
Topic
Trig Equations
2
Show that the equation \(4 \sin ^ { 4 } \theta + 5 = 7 \cos ^ { 2 } \theta\) may be written in the form \(4 x ^ { 2 } + 7 x - 2 = 0\), where \(x = \sin ^ { 2 } \theta\).
Hence solve the equation \(4 \sin ^ { 4 } \theta + 5 = 7 \cos ^ { 2 } \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10