5 The management of a factory thinks that the mean time required to complete a particular task is 22 minutes. The times, in minutes, taken by employees to complete this task have a normal distribution with mean \(\mu\) and standard deviation 3.5. An employee claims that 22 minutes is not long enough for the task. In order to investigate this claim, the times for a random sample of 12 employees are used to test the null hypothesis \(\mu = 22\) against the alternative hypothesis \(\mu > 22\) at the \(5 \%\) significance level.
- Show that the null hypothesis is rejected in favour of the alternative hypothesis if \(\bar { x } > 23.7\) (correct to 3 significant figures), where \(\bar { x }\) is the sample mean.
- Find the probability of a Type II error given that the actual mean time is 25.8 minutes.