5 The continuous random variable \(X\) has probability density function given by
$$f ( x ) = \begin{cases} k \cos x & 0 \leqslant x \leqslant \frac { 1 } { 4 } \pi
0 & \text { otherwise } \end{cases}$$
where \(k\) is a constant.
- Show that \(k = \sqrt { } 2\).
- Find \(\mathrm { P } ( X > 0.4 )\).
- Find the upper quartile of \(X\).
- Find the probability that exactly 3 out of 5 random observations of \(X\) have values greater than the upper quartile.