CAIE S2 2009 November — Question 5

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2009
SessionNovember
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

5 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} k \cos x & 0 \leqslant x \leqslant \frac { 1 } { 4 } \pi
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \sqrt { } 2\).
  2. Find \(\mathrm { P } ( X > 0.4 )\).
  3. Find the upper quartile of \(X\).
  4. Find the probability that exactly 3 out of 5 random observations of \(X\) have values greater than the upper quartile.