2 A headteacher models the number of children who bring a 'healthy' packed lunch to school on any day by the distribution \(\mathrm { B } ( 150 , p )\). In the past, she has found that \(p = \frac { 1 } { 3 }\). Following the opening of a fast food outlet near the school, she wishes to test, at the \(1 \%\) significance level, whether the value of \(p\) has decreased.
- State the null and alternative hypotheses for this test.
On a randomly chosen day she notes the number, \(N\), of children who bring a 'healthy' packed lunch to school. She finds that \(N = 36\) and then, assuming that the null hypothesis is true, she calculates that \(\mathrm { P } ( N \leqslant 36 ) = 0.0084\). - State, with a reason, the conclusion that the headteacher should draw from the test.
- According to the model, what is the largest number of children who might bring a packed lunch to school?