CAIE P1 2016 March — Question 9 6 marks

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2016
SessionMarch
Marks6
TopicRadians, Arc Length and Sector Area

9
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0f58de6c-aba7-4a79-a962-c23be3ee0aa9-4_433_476_264_872} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} In Fig. 1, \(O A B\) is a sector of a circle with centre \(O\) and radius \(r\). \(A X\) is the tangent at \(A\) to the arc \(A B\) and angle \(B A X = \alpha\).
    1. Show that angle \(A O B = 2 \alpha\).
    2. Find the area of the shaded segment in terms of \(r\) and \(\alpha\).
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0f58de6c-aba7-4a79-a962-c23be3ee0aa9-4_451_503_1162_861} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} In Fig. 2, \(A B C\) is an equilateral triangle of side 4 cm . The lines \(A X , B X\) and \(C X\) are tangents to the equal circular \(\operatorname { arcs } A B , B C\) and \(C A\). Use the results in part (a) to find the area of the shaded region, giving your answer in terms of \(\pi\) and \(\sqrt { } 3\).
    [0pt] [6]