CAIE P1 2016 March — Question 7

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2016
SessionMarch
TopicVectors 3D & Lines

7
\includegraphics[max width=\textwidth, alt={}, center]{0f58de6c-aba7-4a79-a962-c23be3ee0aa9-3_529_698_260_721} The diagram shows a pyramid \(O A B C\) with a horizontal triangular base \(O A B\) and vertical height \(O C\). Angles \(A O B , B O C\) and \(A O C\) are each right angles. Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O B\) and \(O C\) respectively, with \(O A = 4\) units, \(O B = 2.4\) units and \(O C = 3\) units. The point \(P\) on \(C A\) is such that \(C P = 3\) units.
  1. Show that \(\overrightarrow { C P } = 2.4 \mathbf { i } - 1.8 \mathbf { k }\).
  2. Express \(\overrightarrow { O P }\) and \(\overrightarrow { B P }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  3. Use a scalar product to find angle \(B P C\).