CAIE S2 2024 March — Question 6

Exam BoardCAIE
ModuleS2 (Statistics 2)
Year2024
SessionMarch
TopicContinuous Probability Distributions and Random Variables
TypeSymmetry property of PDF

6 The graph of the probability density function f of a random variable \(X\) is symmetrical about the line \(x = 2\). It is given that \(\mathrm { P } ( 2 < X < 5 ) = \frac { 117 } { 256 }\).
  1. Using only this information show that \(\mathrm { P } ( X > - 1 ) = \frac { 245 } { 256 }\).
    It is now given that, for \(x\) in a suitable domain, $$f ( x ) = k \left( 12 + 4 x - x ^ { 2 } \right) , \text { where } k \text { is a constant. }$$
  2. Find the value of \(k\).
  3. A different random variable \(X\) has probability density function \(\mathbf { g } ( x ) = \frac { 2 } { 9 } \left( 2 + x - x ^ { 2 } \right)\). The domain of \(X\) is all values of \(x\) for which \(\mathrm { g } ( x ) \geqslant 0\). Find \(\operatorname { Var } ( X )\).
    \includegraphics[max width=\textwidth, alt={}, center]{ff3433b0-baab-45e3-845e-56a794739bba-11_63_1547_447_347}