4 A random variable \(X\) has probability density function f defined by
$$f ( x ) = \begin{cases} \frac { a } { x ^ { 2 } } - \frac { 18 } { x ^ { 3 } } & 2 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$
where \(a\) is a constant.
- Show that \(a = \frac { 27 } { 2 }\).
- Show that \(\mathrm { E } ( X ) = \frac { 27 } { 2 } \ln \frac { 3 } { 2 } - 3\).