CAIE P1 2018 June — Question 4

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2018
SessionJune
TopicTrig Graphs & Exact Values

4 The function f is such that \(\mathrm { f } ( x ) = a + b \cos x\) for \(0 \leqslant x \leqslant 2 \pi\). It is given that \(\mathrm { f } \left( \frac { 1 } { 3 } \pi \right) = 5\) and \(\mathrm { f } ( \pi ) = 11\).
  1. Find the values of the constants \(a\) and \(b\).
    \includegraphics[max width=\textwidth, alt={}, center]{58d65166-2b1a-4b58-9859-afe919c0a3a9-05_63_1566_397_328}
  2. Find the set of values of \(k\) for which the equation \(\mathrm { f } ( x ) = k\) has no solution.
    \includegraphics[max width=\textwidth, alt={}, center]{58d65166-2b1a-4b58-9859-afe919c0a3a9-06_622_878_260_632} The diagram shows a three-dimensional shape. The base \(O A B\) is a horizontal triangle in which angle \(A O B\) is \(90 ^ { \circ }\). The side \(O B C D\) is a rectangle and the side \(O A D\) lies in a vertical plane. Unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are parallel to \(O A\) and \(O B\) respectively and the unit vector \(\mathbf { k }\) is vertical. The position vectors of \(A , B\) and \(D\) are given by \(\overrightarrow { O A } = 8 \mathbf { i } , \overrightarrow { O B } = 5 \mathbf { j }\) and \(\overrightarrow { O D } = 2 \mathbf { i } + 4 \mathbf { k }\).