A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q4
CAIE P1 2018 June — Question 4
Exam Board
CAIE
Module
P1 (Pure Mathematics 1)
Year
2018
Session
June
Topic
Reciprocal Trig & Identities
4
Prove the identity \(( \sin \theta + \cos \theta ) ( 1 - \sin \theta \cos \theta ) \equiv \sin ^ { 3 } \theta + \cos ^ { 3 } \theta\).
Hence solve the equation \(( \sin \theta + \cos \theta ) ( 1 - \sin \theta \cos \theta ) = 3 \cos ^ { 3 } \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10