CAIE P1 2017 June — Question 5

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2017
SessionJune
TopicVectors 3D & Lines

5
1
3 \end{array} \right) \quad \text { and } \quad \overrightarrow { O B } = \left( \begin{array} { r } 5
4
- 3 \end{array} \right) .$$ The point \(P\) lies on \(A B\) and is such that \(\overrightarrow { A P } = \frac { 1 } { 3 } \overrightarrow { A B }\).
  1. Find the position vector of \(P\).
  2. Find the distance \(O P\).
  3. Determine whether \(O P\) is perpendicular to \(A B\). Justify your answer.
    5
  4. Show that the equation \(\frac { 2 \sin \theta + \cos \theta } { \sin \theta + \cos \theta } = 2 \tan \theta\) may be expressed as \(\cos ^ { 2 } \theta = 2 \sin ^ { 2 } \theta\).
  5. Hence solve the equation \(\frac { 2 \sin \theta + \cos \theta } { \sin \theta + \cos \theta } = 2 \tan \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).