CAIE M2 2018 November — Question 5

Exam BoardCAIE
ModuleM2 (Mechanics 2)
Year2018
SessionNovember
TopicWork, energy and Power 2

5 A particle \(P\) of mass 0.7 kg is attached to a fixed point \(O\) by a light elastic string of natural length 0.6 m and modulus of elasticity 15 N . The particle \(P\) is projected vertically downwards from the point \(A , 0.8 \mathrm {~m}\) vertically below \(O\). The initial speed of \(P\) is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find the distance below \(A\) of the point at which \(P\) comes to instantaneous rest.
  2. Find the greatest speed of \(P\) in the motion.
    \includegraphics[max width=\textwidth, alt={}, center]{f922bf53-94a0-4ccc-8c38-959d2f795629-10_478_652_260_751} The diagram shows a uniform lamina \(A B C D E F G H\). The lamina consists of a quarter-circle \(O A B\) of radius \(r \mathrm {~m}\), a rectangle \(D E F G\) and two isosceles right-angled triangles \(C O D\) and \(G O H\). The rectangle has \(D G = E F = r \mathrm {~m}\) and \(D E = F G = x \mathrm {~m}\).
  3. Given that the centre of mass of the lamina is at \(O\), express \(x\) in terms of \(r\).
  4. Given instead that the rectangle \(D E F G\) is a square with edges of length \(r \mathrm {~m}\), state with a reason whether the centre of mass of the lamina lies within the square or the quarter-circle.
    \includegraphics[max width=\textwidth, alt={}, center]{f922bf53-94a0-4ccc-8c38-959d2f795629-12_384_693_258_726} A rough horizontal rod \(A B\) of length 0.45 m rotates with constant angular velocity \(6 \mathrm { rad } \mathrm { s } ^ { - 1 }\) about a vertical axis through \(A\). A small ring \(R\) of mass 0.2 kg can slide on the rod. A particle \(P\) of mass 0.1 kg is attached to the mid-point of a light inextensible string of length 0.6 m . One end of the string is attached to \(R\) and the other end of the string is attached to \(B\), with angle \(R P B = 60 ^ { \circ }\) (see diagram). \(R\) and \(P\) move in horizontal circles as the system rotates. \(R\) is in limiting equilibrium.
  5. Show that the tension in the portion \(P R\) of the string is 1.66 N , correct to 3 significant figures.
  6. Find the coefficient of friction between the ring and the rod.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.