3 A particle \(P\) of mass 0.4 kg is projected horizontally along a smooth horizontal plane from a point \(O\). After projection the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its displacement from \(O\) is \(x \mathrm {~m}\). A force of magnitude \(8 x \mathrm {~N}\) directed away from \(O\) acts on \(P\) and a force of magnitude ( \(2 \mathrm { e } ^ { - x } + 4\) ) N opposes the motion of \(P\). One end of a light elastic string of natural length 0.5 m is attached to \(O\) and the other end of the string is attached to \(P\).
- Show that \(v \frac { \mathrm {~d} v } { \mathrm {~d} x } = 20 x - 10 - 5 \mathrm { e } ^ { - x }\) before the elastic string becomes taut.
- Given that the initial velocity of \(P\) is \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), find \(v\) when the string first becomes taut.
When the string is taut, the acceleration of \(P\) is proportional to \(\mathrm { e } ^ { - x }\). - Find the modulus of elasticity of the string.