CAIE M2 2016 November — Question 7

Exam BoardCAIE
ModuleM2 (Mechanics 2)
Year2016
SessionNovember
TopicProjectiles

7 A particle \(P\) is projected with speed \(35 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point \(O\) on a horizontal plane. In the subsequent motion, the horizontal and vertically upwards displacements of \(P\) from \(O\) are \(x \mathrm {~m}\) and \(y \mathrm {~m}\) respectively. The equation of the trajectory of \(P\) is $$y = k x - \frac { \left( 1 + k ^ { 2 } \right) x ^ { 2 } } { 245 }$$ where \(k\) is a constant. \(P\) passes through the points \(A ( 14 , a )\) and \(B ( 42,2 a )\), where \(a\) is a constant.
  1. Calculate the two possible values of \(k\) and hence show that the larger of the two possible angles of projection is \(63.435 ^ { \circ }\), correct to 3 decimal places. For the larger angle of projection, calculate
  2. the time after projection when \(P\) passes through \(A\),
  3. the speed and direction of motion of \(P\) when it passes through \(B\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }