6 A horizontal disc with a rough surface rotates about a fixed vertical axis which passes through the centre of the disc. A particle \(P\) of mass 0.2 kg is in contact with the surface and rotates with the disc, without slipping, at a distance 0.5 m from the axis. The greatest speed of \(P\) for which this motion is possible is \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Calculate the coefficient of friction between the disc and \(P\).
\(P\) is now attached to one end of a light elastic string, which is connected at its other end to a point on the vertical axis above the disc. The tension in the string is equal to half the weight of \(P\). The disc rotates with constant angular speed \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\) and \(P\) rotates with the disc without slipping. \(P\) moves in a circle of radius 0.5 m , and the taut string makes an angle of \(30 ^ { \circ }\) with the horizontal. - Find the greatest and least values of \(\omega\) for which this motion is possible.
- Calculate the value of \(\omega\) for which the disc exerts no frictional force on \(P\).